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Abstrac t - -We  derive a set of  equations which can be used to calculate the finite strain ellipsoid and longitudinal 
strains from measured  strain axial ratios and orientations. The argument  is based upon strain data from sections 
which carry the most  relevant structural and kinematic da ta - - the  cross-section plane and the cleavage plane. 
These equations can be used to calculate pinline trajectories for correct restoration of sheared units in balanced 
sections. 

INTRODUCTION 

Many deformed geological sections show a more or less 
significant contribution by ductile strain and subscale 
distributed faulting (e.g. Woodward et al. 1986, Geiser 
1988, Protzman & Mitra 1990, Dittmar et al. 1994). 
Ductile strain violates the traditional rules of section 
balancing because it implicates changes in line lengths, 
stratigraphic thickness or angles (e.g. fault cut-offs) and 
most possibly a change of the cross-section area. The 
construction techniques of balanced sections generally 
require that the section plane is strictly parallel to the 
particle displacement vector field of the deformed 
bodies. This requirement relates to the principle rule of 
area balance (Dahlstrom 1969), a geological conser- 
vation law which, in practice, amounts to the assumption 
of plane strain in the section plane. Thus a simple 
balance of line lengths meets the above plane strain 
requirement only in cases of no or weak distributed 
deformation. Several papers have so far dealt with the 
geometrical consequences of strain (e.g. Cobbold 1979, 
Ramsay & Huber  1983, Woodward et al. 1989, Howard 
1993) and propose strategies for including strain data in 
section restoration, while however maintaining the rule 
of area balance or plane strain. 

In many natural cases, the plane strain rule is not 
strictly realised. Either strain is not plane, and/or the 
principal plane of strain (XZ)  does not parallel the 
section plane (the X Z  plane usually is perpendicular to 
the strike of major structures and contains the direction 
of assumed tectonic transport), or area is not conserved 
due to volume change. In these cases, especially in the 
more realistic case of the non-coaxial superimposition of 
strain and displacement increments, the fundamental 
requirement for section balancing is violated and resto- 
ration of sections in two dimensions does not yield a 
strictly balanced solution. Application of balancing 

techniques which were originally designed for external 
parts of fold belts to the more internal parts by several 
workers has proved quite successful in understanding 
the internal geometry and kinematic evolution of inter- 
nally strained belts (Dittmar et al. 1994). In these more 
weakly constrained situations some correction has to be 
performed on bed lengths, bed thicknesses, cross- 
section area and restoration procedures which are based 
on assumptions or observations of the geometrical de- 
formation mechanism (i.e. flexural slip, simple shear, 
etc.). 

The present paper develops a set of equations which 
can be used to calculate the finite strain ellipsoid and 
longitudinal strains from measured strain axial ratios 
and orientations as well as to calculate pinline trajec- 
tories for correct restoration of sheared units. The 
argument is based on easily available standard strain 
data from sections which carry the most relevant struc- 
tural and kinematic information (namely cross-section 
and cleavage plane). 

CALCULATION OF AXIAL ELONGATIONS 

The three-dimensional state of strain is expressed by 
the ellipticities of the three principal planes of strain and 
is usually written in terms of the ratios of the principal 
extensions (Rxz  = (1 + el)/(1 + e3), R y z  = (1 + e2)/ 
(1 + e3), and R x y  = (1 + ea)/(1 + e2)). 

The volume VE of an ellipsoid with lie = Vvs, volume 
of the unit sphere, is VE = 4/3 z~ * a * b * c where a, b and 
c are semiaxes of the ellipsoid. The volumetric dilation 
of the strain ellipsoid 1 + dV is 

1 + dV = a * b * c = (1 + el )  * (1 + e2) * (1 + e3). (1) 

From the final and the original volume dV is defined 
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as ( V g - V o ) / V o .  Equation (1) can be rearranged to 
derive (1 + et) from the principal axial ratios 

(1 + e,) = ((Rexz* (1 + dV))/Ryz) '/3 (2) 

and for the intermediate and short axes: 

(1 + ee) =- ((Rxz * (1 + dV))/Rev') '/3 (3) 

(1 + e3) = ((Rxv* (1 + dV))/RZz) 'n. (4) 

Changes of length in any other direction within the 
strain ellipsoid can be calculated if their orientation with 
respect to the principal extensions and their axial ratios 
is known. 

CALCULATION OF LONGITUDINAL STRAINS 

Measured angles between the line whose longitudinal 
strain is to be determined and the ellipse major axis can 
be used in the equations for the ellipse or the ellipsoid in 
order to determine the longitudinal strain of any line. 
The Cartesian equation of an ellipse is (Fig. la): 

x'2/a 2 + y ' e / b 2  = 1. (5 )  

The coordinates of a point P' on the ellipse are 

x' = r' * cos a '  (6) 

y' = r' * sin a '  (7) 

(with x' and y' :  coordinates of an ellipse point P',  r' : 
radius of P' ,  and a ' :  angle between the ellipse major axis 
and OP') .  Inserting (6) and (7) in (5) gives: 

(r' * cos a ')2/a2 + r' * sin a')e/b 2 = 1. 

Isolation of r' yields: 

r' = 1 / ( c o s  2 a ' / a e +  s in  e a' /b2)  1/2. ( 8 )  

The equivalent percent extension is: 

dL[% ] = ( r ' -  1)* 100. (9) 

The three-dimensional case follows an analogous pro- 
cedure. The Cartesian equation for the strain ellipsoid 
is:  

x'Z/a 2 + y 'e/b2 + z'2/c 2 = 1. (10) 

The trigonometric relationships in an ellipsoid yield the 
following equations for the coordinates of P' (with r", 
the radius of the projection of P' onto the XY-plane (see 
Fig. lb)  replaced by r" = r' * cos fi'): 

x' = co sa '  * r '  * cosfl '  (11) 

y' = sin a '  * r' * cos fl' (12) 

z' = sin/3' * r' (13) 

[r': radius of point (P') of the ellipsoid shell; see Fig. lb]. 
These equations are inserted in (10) which is then 
rearranged to give r'. In this case--because reference is 
taken to the principal axes of the strain ellipsoid--a, b 
and c can be replaced by the principal extensions. 
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Fig. 1. Geometries for the calculation of longitudinal strains within 
(a) the two-dimensional strain ellipse, (b) the three-dimensional strain 
ellipsoid, and (c) for the calculation of the three-dimensional state of 
strain from one principal and one oblique section (&---cleavage, s0--  
bedding). (d) Bedding parallel shear of material lines originally 
perpendicular to bedding; (e) example of a synthetic pinline trace for a 
thick, pervasively deformed and sheared thrust body from the Rhenish 

Massif, Mid-European Variscides (see Dinmar  et al. 1994). 



Non-plane strain in section balancing 

r' = ((cos a ' *  cos/3')2/(1 + el) 2 

+ (sin a '  * cos/3')2/(1 + e2) 2 

+(sin/3')2/(1 + e3)2) -1/2. (14) 

As in the two-dimensional case the percent longitudi- 
nal strain along the chosen line can be expressed using 
equation (9). In section balancing the reciprocal value of 
r' can be used for correcting bedlength or the strati- 
graphic thickness (see Ramsay & Huber 1983) if a '  and 
/3' are chosen appropriately. The factor takes into 
account the influence of dilatation if the three- 
dimensional state of strain was calculated as shown in (2) 
- (4). At the same time, longitudinal strains can be 
calculated for any direction required, namely changes of 
length parallel and perpendicular to the section. 

CALCULATION OF THE STRAIN ELLIPSOID 
FROM ONE PRINCIPAL PLANE OF STRAIN 

AND ONE OBLIQUE SECTION 

Three-dimensional measurements usually are calcu- 
lated from the axial ratios of at least two principal 
sections of the strain ellipsoid or from three arbitrary 
sections. From an economical point of view it is usually 
found convenient to focus analysis on two sections. Field 
practice in an accompanying study (Dittmar et al. 1994) 
has shown that the principal planes are not always 
accurately defined by fabrics or they may be oblique to 
the cross-section plane defined by field structural data. 
The cleavage plane mostly approximates the XY-plane 
of the finite ellipsoid, but the long ellipse axis may show 
a high orientation variability in the normally investi- 
gated cleavage plane and is mostly oblique to fold axes. 
In section balancing the second section to investigate 
usually is the cross-section plane. Both sections can be 
used to calculate the entire finite strain ellipsoid because 
its orientation is confined by the above observations. 

The calculation of the three-dimensional strain from 
strain measurements in two sections, only one being a 
principal plane of strain, uses the following procedure 
(see Fig. lc). The data required are: 

• One axial ratio (R) of a principal plane of strain, 
generally the Rxy-value; 

• the angle (a ')  between the major axis of the ellipse in 
this principal plane and the orientation of the second 
plane which is subperpendicular to the first plane; 

• the axial ratio of the strain ellipse within the second 
plane (i.e. the cross-section plane, Rcs). 

Res = r'/(1 + e3). (15) 

This equation is rearranged using (8) for the XY-plane: 

(1 + e3) = (cos 2 a'/(1 + el) 2 

+ sin 2 a'/(l + e2)2) -1/2. Rc~ (16) 

(1 + e2) is replaced using Rxy = (1 + el)/(1 + e2) which 
changes (16) to 
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(1 + e3) = (1 + el)/(Rcs * (cos 2 a t  

+ (sin 2 a '  * R~vr))l/2). (17) 

The axial ratio of a second principal plane of strain, Rxz,  
may now be calculated using the expression in (17): 

Rxz  = Rcs * (cos  2 a '  + (sin 2 a' * R2xy)) -1/2. (18) 

The third ellipsoid plane is calculated from Rrz  = Rxz /  
Rxv  which then allows determination of the ellipsoid 
shape factor and of the longitudinal strains along the 
principal strain axes [equations (2)-(4)]. 

CALCULATION OF STRAIN-CORRECTED PIN- 
LINE GEOMETRIES 

Like flexural slip or flexural flow, pervasive defor- 
mation such as the formation of slaty cleavage or fault- 
related bed parallel shear exerts a component of simple 
shear parallel to the planes of bedding. Bedding planes 
are usually taken as the marker lines for restoration (Fig. 
ld). Material lines which were originally oriented per- 
pendicular to bedding will usually not maintain this 
position due to this shear. Pinlines, representing such 
material lines, are placed as a rule where no finite 
bedding parallel shear during flexural slip is assumed to 
have accumulated: in the undeformed foreland, at axial 
planes of major symmetrical folds, at crestal planes of 
ramp anticlines, at the 'return to regional'. In the last 
case and in those cases where positioning of a local 
pinline on a ramp can not be avoided due to the lack of 
other possibilities within a thrust body, their geometry 
has to be corrected. Without this procedure restoration 
of angles to their predeformational stage (i.e. cut-off 
angles etc.) may show distortion and sections may not 
balance. 

Bedding parallel shear in the section plane by ductile 
deformation depends on the strain in cross-section (Rcs) 
and the angle q~' between strain axes and bedding in 
cross-section (Fig. lc, see Ramsay & Huber 1983) 

= arctan (((R~s - 1) * tan q~')/((l + R~s) * tan 2 ~')).  

(19) 

The angle obtained is used to draw a pinline deviating 
from the orientation perpendicular to bedding in the 
direction of local shear. Eventual slip on bedding planes 
adds to this shear. Generally a complete pinline profile 
through the lithologies of a thrust body has to be calcu- 
lated from strain data (Fig. le). A free program calculat- 
ing the presented restoration parameters is available 
from the first author, if a 3.5"-disc is provided. 

DISCUSSION AND CONCLUSIONS 

The procedures presented so far are aimed at properly 
restoring deformed single thrust sheets. The restoration 
of displacement of the latter on faults into or out of the 
section requires further information. Only in the cases 
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where the lateral structural continuity of the structures 
modelled is definitely larger than the inferred out of 
section displacement, can it be assumed that the effects 
on restoration are negligible. In practice, restoration of 
deformed units has to take into account a number of 
further aspects, some of which are outlined. 

The equations clearly show that for non-plane strain 
deformation information on orientation and shape of 
the finite strain ellipsoid i.e. by three-dimensional 
strain analysis--as well as volumetric dilatation is 
needed to properly determine longitudinal strains. Due 
to fundamental problems in determining volumetric 
changes the latter is neglected in most cases. Generally, 
this will result in an underestimate of shortening and 
basin width (cf. Mitra 1994). Moreover, the term for 
volumetric dilation in the equations does not distinguish 
its probable anisotropic effects on the three principal 
stretches e.g. in the case of pressure solution or break- 
down of pore volume in an open system where volu- 
metric strain may be completely partitioned in 
shortening one axis while leaving the others unaffected 
[dV in equations (3) and (4) will be zero in these cases]. 
Only small scale redistribution of matter in a system 
closed at least on thin section scale will be detected by 
standard strain analysis techniques (e.g. centre to centre 
and related techniques) but will not quantitatively re- 
solve the partitioning between the different active shape 
changing mechanisms. Since the complete volumetric 
dilatation tensor is not usually known, this simplification 
has to be accepted in most cases. 

Complete restoration of deformed thrust units includ- 
ing finite strain is not a straightforward procedure be- 
cause superposition of strain increments is non- 
commutative. Ideally therefore, the identified sequence 
of increments should be restored sequentially (cf. Cob- 
bold 1979, Protzmann & Mitra 1990). On average, a 
sequence of compactional and one or more non-coaxial 
tectonic strain increments will have occurred. Identifi- 
cation and quantification of these will not usually be 
unequivocal, especially with relationship to rotation of 
and folding within thrust units. Simplified practical solu- 
tions will therefore tend to restore displacement and 
deformation of a thrust body in a single step (Howard 
1993). The error introduced by this procedure is how- 
ever estimated to be well below that caused by complete 
neglect of strain data. Restoration based on the above 
type of data, whether single or multi-step, is suggested to 
proceed from marker lines (pinlines, bedding, etc.) 
which secures internal coherency and strain compatibi- 
lity (cf. Ramsay & Huber  1983). This procedure is in 
contrast to other strain restoration techniques which 
restore either homogeneously deformed segments along 

calculated displacement vectors (Howard 1993) or apply 
a finite element technique (Cobbold 1979, Woodward et  

al.  1986). 
It is obvious from the above discussed problems that 

advances in balancing techniques which claim to repro- 
duce the complexities of nature not only need to incor- 
porate strain data but have to include three-dimensional 
volume construction and restoration. In practice the 
data obtained from surface sampling within a defined 
structure have to be used to infer bed length correction 
factors as well as synthetic pinline traces for a complete 
thrust body which is not entirely satisfactory. Because 
strain in general is heterogeneous, ideally, a complete 
mapping of three-dimensional strain in a thrust body is 
required. Due to the impracticability of this demand, 
techniques of extrapolation or prediction of strain are 
needed to approximate natural strain distributions. 
Apart from forward modelling techniques, the system- 
atic relationships between finite strain and controlling 
parameters like grain size, composition, structural posi- 
tion and deformation temperature, found for example 
by Dittmar et al.  (1994) may show the way. 
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